PROM in Clouds: Exploring PeRformance OptiMization in Clouds

PENNSTATE

Chita R. Das Computer Science & Engineering Department The Pennsylvania State University University Park, PA 16802 Email: das@cse.psu.edu

NAS Keynote: July18, 2103

Pope's Inauguration

Then...

When smartphones and tablets

light up the sky, 99 load up the clouds.

Now...

Era of Internet and Cloud

What Happens in an Internet Minute?

*Source: Intel 2012

Cloud Computing

"Cloud" refers to both the *services* delivered over the Internet and the *infrastructure*.

- Pay-as-you-go model of utility computing
- Economy of scale
- Elasticity
- On-demand remote access to shared infrastructure
- Virtualized
- Popularity and usage is growing...

Cloud Computing Growth

Cloud Computing for HPC

- HPC applications require high bandwidth, low latency and very high compute capabilities
- Clouds present a natural choice to meet HPC demands through

 Flexible performance at scale
 Time and cost optimization
- E.g., AWS runs variety of HPC applications including CAD, molecular modeling, genome analysis, weather simulation

Why Cloud is becoming popular?

• Most desirable form of IT

- Cap-Ex free computing
- Pay-as-you-go on-demand scaling
- Resiliency and Redundancy
- Fast projects deployment with cheap costs

Challenges

- Unpredictable performance
- \circ Lack of QoS support
- Fault-tolarance
- Security/Privacy issues

Cloud in the context of NAS

User Surveys - Cloud Challenges

Q: Rate the challenges/issues of the 'cloud'/on-demand model?

Cloud Performance: State-of-the-art

Real-life Cloud Failures

Enterprise-level failures → importance/need of reliability in clouds

Modeling and Synthesizing Task Placement Constraints in Google Compute Clusters

Joint work with Google SOCC, 2011

Cloud Workloads

- Current workload only addresses *how much* resource tasks use
- But machine heterogeneity sometimes requires tasks to specify *which* resources they can use
- Constraints are predicates on machine properties that limit the set of machines a task can run
 - E.g., "kernel_version = x"
- Why constraints?
 - Machine heterogeneity
 - Application optimization
 - Problem avoidance

Thesis: Task placement constraint is an important workload property

Impact of Task Constraints

Q1: Do task placement constraints have a significant impact on task scheduling delays?

Q2: How do we predict the impact of constraints on task scheduling delays?

Q3: How do we extend existing performance benchmarks to include representative task constraints and machine properties?

Q1: Do Constraints Impact Task Scheduling Delays?

- Methodology
 - Run trace driven benchmarks to obtain task scheduling delays
 - Compare results with and without task constraints
- Evaluation metric (normalized) task scheduling delay

 Ratio of delay with constraints to delay without constraints

Effect of Task Constraints

Q2: How to Predict the Impact of Constraints on Task Scheduling Delays?

- Motivation extend resource utilization to constraints
- Utilization Multiplier (UM) is the ratio of resource utilization seen by tasks with a constraint to the average utilization of the resource

 $\circ u_{r,c} = UM$ metric for resource *r* and constraint *c*

• Maximum utilization multiplier (u_c^*)

 $\circ u_c^* = \max_r(u_{r,c})$

u^{*} Predicts Task Scheduling Delays

Q3: How to Extend Performance Benchmarks to Include Task Placement Constraints?

Change benchmarking algorithms

- When benchmark initializes
 - Augment machines with representative (synthetic) properties
- When tasks arrive
 - Augment tasks with representative (synthetic) constraints
- When a task is scheduled
 - Only consider machines whose properties are compatible with the task's constraints

Validation of Synthetic Characterization

Characterization reproduces observed performance with ~ 13% error in task scheduling delay; ~ 5% error in resource utilization

Resource Management in Hadoop MapReduce Clusters

Cloud 2012

Who is using MapReduce/Hadoop?

MapReduce Overview

Hadoop MapReduce Framework

Motivation

Prolonged job completion & poor resource utilization

Architecture of MROrchestrator

Estimator constructs prediction models and suggests dynamic allocations to tasks flagged by GRM

3

Evaluation Experimental Platform

Environment # of nodes		Machine specs.	Tool	Software
Native Hadoop Cluster	24 physical hosts	64-bit, 2.4 GHz AMD Opteron CPU, 4GB RAM, 1GB Ethernet	Linux Containers	Hadoop v0.20.203.0
Virtualized Hadoop Cluster	24 virtualized hosts on 12 physical hosts	Xen Hypervisor with same machine specs. as native Hadoop	Xen-xm	Hadoop v0.20.203. 0

Benchmarks

Applications	Data set	Resource sensitiveness		
Sort	20 GB text data	CPU + I/O		
Wcount	20 GB text data	CPU + Memory		
PiEst	10 million points	CPU		
DistGrep	20 GB text data	CPU + I/O		
Twitter25 GB Twitter graph data		CPU + Memory		
Kmeans10 GB numeric data		CPU + I/O		

Virtualized Infrastructure

Native Hadoop Cluster

MROrchestrator with Mesos and NGM

Performance comparison of Mesos, NGM and MROrchestrator. Performance benefits from the integration of MROrchestrator with Mesos and NGM.

HybridMR: A Hierarchical Scheduler for Hybrid Data Centers

ICDCS 2013

Motivation for Hybrid Platform

- Interactive applications virtual environment
- Batch jobs (MapReduce) native environment

Opportunity: Best of Two Worlds!

- Suitable for batch workloads
- Incurs high cost

- Attractive for interactive applications
- Poor I/O performance

HybridMR

- 2-phase hierarchical scheduler for effective resource management in hybrid datacenters
- 1st phase: estimates virtualization overheads to guide placement of MapReduce jobs
- 2nd phase: dynamic resource management of MapReduce jobs co-running interactive applications

HybridMR Architecture

Phase II Scheduler: Architecture

Results

HybridMR Summary

- Efficient scheduling of workload mix on hybrid compute clusters
- Investigates Hadoop performance on virtual cluster
- ✓ Dynamic resource management
- Achieves best of two worlds (native and virtual)

CloudPD : Problem Determination and Diagnosis in Shared Dynamic Clouds

Joint work with IBM Research, India, DSN 2013

Clouds Usher New Challenges

(a) Increase in application latency due to faulty cloud events (b) High rate of change of VMs operating context

System Context

Faults Examples

Cloud-related faults	Non-cloud/Application faults
Impact due to resource sharing	Misconfigured application
Wrong VM sizing	Software bugs
Incorrect VM reconfiguration	Application or OS update
Faulty VM migration	Anomalous workload change

Competitive Methodologies

- Baseline B1: no operating context notion; only considers VM CPU and memory + CloudPD's three stages
- Baseline B2: *oracle*; analyzes every interval in detail
- Baseline B3: no correlation across peers
- Baseline B4: uses static thresholds to trigger events

Evaluation Metrics	Definition
Recall	# of successful detections / total # of anomalies
Precision	# of successful detections / total # of alarms
Accuracy	2 * Recall * Precision / Recall + Precision
False Alarm Rate	# of false alarms / total # of alarms

Results

Method	# of correct normal detections	# of correct anomalous detections	# of correct Phase 1 detections	# of total predicted anomalies	Recall	Precision	Accuracy	False Alarm Rate
CloudPD	67	18	21	24	0.78	0.75	0.77	0.25
B1	58	10	14	25	0.43	0.40	0.42	0.60
B2	67	21	23	27	0.91	0.78	0.84	0.22
B3	60	11	21	24	0.48	0.46	0.47	0.54
B4	60	13	15	26	0.57	0.50	0.53	0.50

Comparing end-to-end diagnosis effectiveness of CloudPD for a 24-hour enterprise trace-based case study

CloudPD Summary

- CloudPD is a problem determination framework for clouds
- ✓ Introduces the notion of *operating context* Hierarchical architecture to address massive scale
- Integrates with cloud manager for remediation actions
- Comprehensive evaluation with representative Web 2.0
 Achieves

Conclusions

- Why is research in clouds important?
 - Cost-effective and flexible business model
 - Numerous challenges and umpteen research opportunities
- Performance and reliability in clouds are major concerns
 - Characterization of cloud workloads to better understand their performance impact
 - Effective resource management and scheduling for cloud-based MapReduce clusters and hybrid data centers
 - Efficient end-to-end reliability management in clouds
 - A preliminary performance model (D-factor)

Future Research Directions

- Heterogeneity-aware scheduling and resource management in cloud-based clusters
- Analytical modeling of MapReduce performance in hybrid data centers
- Better diagnosis and classification of faults in large-scale virtualized clouds
- Optimizing MapReduce deployment in shared memory systems with focus on network communication (NoCs)
- Many more ...

