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Pope’s Inauguration

Then...

(14
When smartphones

and tablets

light up the sky,

2
load up the clouds.

Source : http://www.alternet.org/speakeasy/alyssa-figueroa/recording-memories-why-must-we-capture-our-every-moment




Era of Internet and Cloud

What Happens in an Internet Minute?
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Cloud Computing

“Cloud” refers to both the services delivered GA,,pQQQQSle
over the Internet and the infrastructure. ’ ﬂ
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é Eg Google
@ 20

Windows Azure -
. Platform as a Service (PaaS) )
1 ™
amazon —7 Eucalyptus
webservices" 7 Systems

\Infrastructure as a Service (IaaS)/

Increased provider
automation

Increased
end-user control



Cloud Computing Growth

Figure 3 Forecast: Global Public Cloud Market Size, 2011 To 2020

o The spreadsheet detailing this forecast is available online.
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Cloud Computing for HPC

« HPC applications require high bandwidth, low latency and very
high compute capabilities

* Clouds present a natural choice to meet HPC demands through
o Flexible performance at scale
o Time and cost optimization

« E.g., AWS runs variety of HPC applications including CAD,
molecular modeling, genome analysis, weather simulation




Why Cloud is becoming popular?

&

Scale and

le
Cos

Encapsulated

e Most desirable form of IT [+ Change (4]

Management

o Cap-Ex free computing

o Pay-as-you-go on-demand scaling  ©

o Resiliency and Redundancy

o Fast projects deployment with cheap costs
« Challenges

o Unpredictable performance

o Lack of QoS support

o Fault-tolarance

o Security/Privacy issues
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Cloud in the context of NAS
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User Surveys - Cloud Challenges

Q: Rate the challenges/issues of the 'cloud’/on-demand model?

Hard to integrate with in-house IT 6.8%

Not enough ability to customize .0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
>

Percentage of Users Participated

*Source: IDC Enterprise, September 2009. Numbers are representative showing relative importance



Cloud Performance: State-of-the-art

Response Time vs Page Abandonment

Frustrated
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*Source: Performance in the Cloud, Survey report from Compuware.com F



Real-life Cloud Failures

o Enterprise-level failures == importance/need
of reliability in clouds

VALLE :
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Security Cloud
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- Data Center Outages Generate Big Losses

e e i - [0 service
Downtime in a data center can cost an gverage of $505,500 per incident] according to a Ponemon .
Institute study. T ETEEmEmEmEmmmmEmEmEms=s mputing
By Chandler Harris [ InformationWeek 2. M. PDT, in

May 12, 2011 01:22 PM

Sure data center failures are costly, but how costly? Try an average of j FOUI’SC]IJEI'E.

|| 55600 per minute, according to a study of outages at U S -based data B i

centers by the Ponemaon Institute. _'"‘A ....... this
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Performance Challenges in Clouds

Cloud Resource Performance Reliable
Workloads Management Model Services
Lack of Efficient Lack of robust Fault diagnosis

representative

scheduling of

cloud workloads resources

performance
models

in virtualized
clouds
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Ongoing Research in HPCL

[

C N . N (O ™
Workload Resource Performance Fault
Characterization Management Modeling Diagnosis
| / N b/ \_ J
Task Fine-grained Performance Problem
placement resource guantification diagnosis in
constraints scheduling in Clouds clouds
Modeling and MRO_rchestrator and D-Fa_ctor CloudPD: Fault
Synthesizing HybridMR Algorithm Management
SOCC 2011 CLOUD 2012, ICDCS | |SIGMETRICS Framework
2013 2012 DSN 2013




Modeling and Synthesizing Task Placement
Constraints in Google Compute Clusters

Joint work with Google
SOCC, 2011




Cloud Workloads

Current workload only addresses how much resource tasks use

But machine heterogeneity sometimes requires tasks to
specify which resources they can use

Constraints are predicates on machine properties that limit the
set of machines a task can run
o E.g., “kernel_version = x”

Why constraints?
o Machine heterogeneity
o Application optimization
o Problem avoidance

Thesis: Task placement constraint is an important
workload property
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Impact of Task Constraints
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Questions

Q1: Do task placement constraints have a significant
Impact on task scheduling delays?

Q2: How do we predict the impact of constraints on task
scheduling delays?

Q3: How do we extend existing performance benchmarks to 1
Include representative task constraints and machine properties?

/
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Q1: Do Constraints Impact Task
Scheduling Delays?

* Methodology

o Run trace driven benchmarks to obtain task scheduling
delays

o Compare results with and without task constraints

 Evaluation metric — (normalized) task scheduling delay
o Ratio of delay with constraints to delay without constraints
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Effect of Task Constraints

Task Scheduling Delay
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Q2: How to Predict the Impact of Constraints on
Task Scheduling Delays?

 Motivation — extend resource utilization to constraints

 Utilization Multiplier ( UM) is the ratio of resource
utilization seen by tasks with a constraint to the
average utilization of the resource

o U, . = UM metric for resource r and constraint c

e Maximum utilization multiplier (u_.*)
o U.* = max(u,.)
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u.* Predicts Task Scheduling Delays

Task Scheduling Delay
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Q3: How to Extend Performance Benchmarks to
Include Task Placement Constraints?

Change benchmarking algorithms
- When benchmark initializes
o Augment machines with representative (synthetic) properties

- When tasks arrive
o Augment tasks with representative (synthetic) constraints

- When a task 1s scheduled

o Only consider machines whose properties are compatible
with the task’s constraints
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Validation of Synthetic Characterization
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Resource Management in Hadoop
MapReduce Clusters

Cloud 2012




Who is using MapReduce/Hadoop?
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MapReduce Overview

Input h(k1) Output
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Hadoop MapReduce Framework
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Motivation

. = = e u'-»\\ e e —
_ o

32




Architecture of MROrchestrator

N @ GRM uses profiled resource usage data to detect contention and

GRM - *, notifies the corresponding LRMs about resource deficit/hogging task(s)

Performance AN
Balancer AN

-~ Master Node l\ GRM notifies LRMs of final allocation

N\

GRI\/I decisions based on global arbitration

sag®s |
N‘es -

e‘a

it / v
Slave Node Slave Node Slave Node Slave Node

LRM LRM LRM LRM

@ LRM profiles resourgé usage data, and seﬁd.g it to GRM

LRM updates GRM with

. | I >
resource imbalance

Resource
GRM updates LRM with balanced = « = « = > Profiler
resource allocations

Estimator fif:
-->REGRESSION scheme

@ Estimator constructs prediction models and suggests dynamic allocations to tasks flagged by GRM
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Evaluation

Experimental Platform

Environment # of nodes Machine specs. Tool Software
Native Hadoop | 24 physical hosts | 64-bit, 2.4 GHz AMD Linux Hadoop
Cluster Opteron CPU, 4GB Containers | v0.20.203.0
RAM, 1GB Ethernet
Virtualized 24 virtualized Xen Hypervisor with Hadoop
Hadoop Cluster hosts on 12 same machine specs. as | Xen-xm | v0.20.203.
physical hosts native Hadoop 0
Benchmarks
Applications Resource sensitiveness
Sort 20 GB text data CPU + 1/0
Wocount 20 GB text data CPU + Memory
PiEst 10 million points CPU
DistGrep 20 GB text data CPU +1/0
Twitter 25 GB Twitter graph data CPU + Memory
Kmeans 10 GB numeric data CPU + 1/0 "




Virtualized Infrastructure

HADOOP
(HDFS, MapReduce)

[DOHIO} [VMl] -------------------------- | [Dom;)} [VM5]
{ — } Cluster Resource Manager ’ [ }
- (e.g., Mesos, NGM, Condor)

[[Node1 ][Nodez][NodeS]...[Noden]:]

INFRASTRUCTURE
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Native Hadoop Cluster

% increase in CPU utilization

40 m CPU O Memory B CPU+Memory
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10 ...
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% increase in memory utilization
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Twitter Wcount PiEst DistGrep Sort Kmeans
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MROrchestrator with Mesos and NGM

% reduction in JCT

B Mesos O NGM B MROrchestrator
40

20

10

Twitter Wcount PiEst DistGrep Sort Kmeans

% reduction in JCT

B MROrchestrator + Mesos @ MROrchestrator + NGM

25

20-H
MRO+Mesos: 12.8% (avg.), 17%

1579 (max.) red. in JCT
MRO+NGM: 16.6% (avg.), 23.1%

104 (max.) red. in JCT

5_. ..............

0_

Twitter Wcount PiEst DistGrep Sort

Kmeans

Performance comparison of Mesos,
NGM and MROrchestrator.

Performance benefits from the
integration of MROrchestrator
with Mesos and NGM.
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HybridMR: A Hierarchical Scheduler
for Hybrid Data Centers

ICDCS 2013




Motivation for Hybrid Platform

 |nteractive applications - virtual environment
« Batch jobs (MapReduce) - native environment

Interactive Applications & Games
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Opportunity: Best of Two Worlds!

virtuau,zati,ow‘b

- High performance
- High availibility "a

> Suitable for batch
workloads
» Incurs high cost

| - Disaster Recovery
- Cost reductions
b - Flexibility
- Efficient utilization

> Attractive for interactive
applications
» Poor I/0O performance
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HybridMR

« 2-phase hierarchical scheduler for effective resource
management in hybrid datacenters

* 18t phase: estimates virtualization overheads to guide
placement of MapReduce jobs

« 2"d phase: dynamic resource management of
MapReduce jobs co-running interactive applications

41



HybridMR Architecture




Phase || Scheduler: Architecture
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Results
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HYbrldMR Summary g‘m:’“\

o
(%)
o
o
(%)
(%)

v Efficient scheduling of workload mix on
hybrid compute clusters
v Investigates Hadoop performance on virtual cluster
v Dynamic resource management
v Achieves best of two worlds (native and virtual)

- 7 N
40% 45% 4\%%
N4 -
Completion time Utilization Energy
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CloudPD : Problem Determination and
Diagnosis in Shared Dynamic Clouds

Joint work with IBM Research, India, DSN 2013




Cloud Related Faults




Clouds Usher New Challenges
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Characteristics of a Fault

Diagnosis Framework for Clouds

/’

Limited system

Fast detection

}{for scalability

|
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Generic }

knowledge 5 adaptability )L
application adapt to new work with
. accurate and : :
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fast calibration

environments

entities
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System Context

o 1 System oo
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L vm | [vm, | [um, VM, | [vM, | o vm, | |
; Cloud ;
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Faults Examples

Cloud-related faults

Non-cloud/Application faults

Impact due to resource

Misconfigured application

sharing
Wrong VM sizing Software bugs
Incorrect VM Application or OS update

reconfiguration

Faulty VM migration

Anomalous workload change
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Competitive Methodologies

Baseline B1: no operating context notion; only considers
VM CPU and memory + CloudPD’s three stages

Baseline B2: oracle; analyzes every interval in detail
Baseline B3: no correlation across peers

Baseline B4: uses static thresholds to trigger events

Evaluation Metrics Definition

Recall # of successful detections /
total # of anomalies

Precision # of successful detections /
total # of alarms
Accuracy 2 * Recall * Precision /
Recall + Precision
False Alarm Rate # of false alarms / total # of

alarms £




Results

# of # of correct # of correct  # of total False
Method correct anomalous Phase 1 predicted Recall Precision Accuracy Alarm
normal detections detections anomalies Rate
detections
CloudPD 67 18 21 24 0.78 0.75 0.77 0.25
1777781 | 858 | 10 | 1477725 170437 040 | 042 |77 060 |

B2 67 21 23 27 0.91 0.78 0.84 0.22

B3 60 11 21 24 0.48 0.46 0.47 0.54

B4 60 13 15 26 0.57 0.50 0.53 0.50

Comparing end-to-end diagnosis effectiveness of CloudPD
for a 24-hour enterprise trace-based case study
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CloudPD Summary

o
(8}
()
o
(8}
o

v CloudPD is a problem determination framework for clouds

v" Introduces the notion of operating context
Hierarchical architecture to address massive scale

v Integrates with cloud manager for remediation actions
v' Comprehensive evaluation with representative Web 2.0
v Achieves

2\
< 20% 385% < sec

False positives Accuracy Analysis time
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Conclusions

* Why is research in clouds important?
o Cost-effective and flexible business model

o Numerous challenges and umpteen research
opportunities

« Performance and reliability in clouds are major concerns

o Characterization of cloud workloads to better understand
their performance impact

o Effective resource management and scheduling for
cloud-based MapReduce clusters and hybrid data centers

o Efficient end-to-end reliability management in clouds
o A preliminary performance model (D-factor)
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Future Research Directions

Heterogeneity-aware scheduling and resource
management in cloud-based clusters

Analytical modeling of MapReduce performance in
hybrid data centers

Better diagnosis and classification of faults in large-scale
virtualized clouds

Optimizing MapReduce deployment in shared memory
systems with focus on network communication (NoCs)

Many more ...
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Thank You!
Questions?




